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Abstract
We study the dynamics in a simple hierarchical energy landscape. We compare
a straightforward analytical approximation with the results of Monte Carlo
simulations. The model is devised to mimic some aspects of the dynamics
in supercooled liquids. We show that the concept of metabasins, as recently
discussed in the framework of the potential energy landscape of glasses, emerges
quite naturally.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The thermodynamic properties of glasses can be expressed in terms of the properties of the
potential energy landscape (PEL), defined in the configuration space of the system [1, 2].
In particular, the properties of the local minima (inherent structures) are here of primary
importance [3–5]. Recently, the first progress has been reported on also relating the dynamics
to the PEL. For this purpose it was essential to define so-called metabasins (MBs) which
contain a small number of adjacent inherent structures. It could be shown that the dynamics
of binary Lennard-Jones mixture (BMLJ) can be interpreted as a random-walk-like dynamics
between MBs and that the temperature-dependent diffusion constant is inversely proportional
to the average residence time 〈τ (T )〉 in the MBs. It turned out that 〈τ (T )〉 is dominated by
the contributions from long-lived MBs, corresponding to very stable structures in real space.
Thus, knowledge of the individual residence times of the MBs, weighted with their occurrence
probability à la Boltzmann, allows one to predict the diffusion constant [6].

For a given MB i , the average residence time 〈τi (T )〉 has been determined in two different
ways. First, we performed repeated molecular dynamics simulations, always starting from the
same MB and checking after which time this MB has been left. Interestingly, for the different
MBs analysed in this way, we found an Arrhenius behaviour 〈τi (T )〉 = τ0,i exp(β Ei), where
β = 1/kB T . Second, we analysed the saddles around the MB via an explicit saddle-finding
algorithm. Via some mapping (see below for more details), one could predict the activation
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Figure 1. A sketch of the hierarchical model analysed in this work. There is one ground state, n
first excited levels, and nz second excited levels.

energies Ei on the basis of these saddles. Thus we concluded that local analysis of saddles
together with knowledge of the population of the MBs allows one to predict the macroscopic
transport [7].

The complexity of the PEL, reflected, e.g., by the multitude of escape channels from one
minimum and the multi-minimum nature of the escape processes render this mapping highly
non-trivial and only approximate. Thus it may seem surprising that this mapping worked so
well. In this short paper we would like to clarify the approximations by analysing a simple
model which is devised to represent the complex PEL. Via simulations of this model we will
see that the mapping does indeed work. Furthermore, this analysis is designed to give a further
clarification of the MB concept.

2. The model

We analyse the escape from one ground state which has n escape channels. The energy levels
as well as the possible transitions are indicated in figure 1. As soon as one of the second excited
levels has been reached, we assume that the system has escaped from the ground state. All
second excited levels have z degenerate states (z = 2000 in this work). The value of z takes
it into account that a PEL minimum is generally surrounded by many other minima (which,
for reasons of simplicity, have been chosen as degenerate in this model). Each escape channel
is characterized by an energy Vj (1 � j � n) which separates the first excited state from the
ground state and the second excited states from the first excited state.

We first analyse the case n = 1 and determine the escape rate γα via the state α (for
n = 1 : 1 � α � z). It is possible to find a simple analytic expression for the rate. In the
limit V/kB T � 1 the rate for entering the first level is γ01 = �0 exp(−βV ) with some rate
constant �0. Starting from this level, the system has two options. Either it jumps up to the
second level, or it jumps back to the ground state. The latter process is non-activated and has
the rate γ10 = �0. The average residence time 1/γ1 on the first excited level is thus very short
as compared to the residence time in the ground state, since γ01/γ10 = exp(−βV ) � 1 and
1/γ1 < 1/γ10 and thus 1/γ01 � 1/γ1. With some probability p1α the system jumps to the
second excited state α when leaving the first excited level. Thus the total rate to escape via
the second excited state α is given by the rate for reaching the first excited state times the
probability of going up further to state α, i.e.

γα = γ01 p1α = �0 exp(−β2V )/[1 + z exp(−βV )]. (1)

This approximation breaks down at high temperatures where the relation 1/γ01 � 1/γ1 no
longer holds.
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Straightforward algebra yields for the apparent activation energy

Eα
app ≡ − d

dβ
ln γα = V + V pret, (2)

where

pret = 1 − zp1α = 1/[1 + z exp(−βV )] (3)

is the probability of returning to the ground state. Note that pret is strongly temperature
dependent. In the limit of low temperatures one has pret ≈ 1 whereas for high temperatures
one approaches 1/(1 + z) ≈ 0. Thus the apparent activation energy changes from 2V at
low temperatures to V at high temperatures. The crossover temperature, Tc, between the two
limiting scenarios is characterized by pret = 0.5, i.e. kB Tc = V/ ln z. Thus, the relation
V/(kB T ) � 1 in the relevant temperature regime T ≈ Tc is equivalent to ln z � 1.

The physical interpretation of this crossover is very simple. At low temperatures the
system basically has to jump up twice with an activated process giving rise to an apparent
activation energy of 2V . At higher temperatures the probability of reaching one of the second
excited levels starting from the first excited level becomes higher than 0.5 as long as z > 1.
The reason is that, due to the multitude of second excited levels, the entropy governs the further
evolution of the system.

The relations for the apparent activation energy can be easily generalized to the case
where several first excited levels exist, i.e. n > 1 in our notation. Since all escape channels
are uncoupled, one expects at low temperatures

γ =
zn∑

α=1

γα (4)

where the sum is over the zn different escape channels. Now the apparent activation energy
Eapp can be written as

Eapp = − d

dβ
ln

∑

α

γα =
∑

α

γα

γ
Eα

app. (5)

The factor γα/γ can be interpreted as the probability that exit α is taken.
Intuitively, for T < Tc the ground state as well as the first excited level can be regarded as

one effective state with many forward and backward jumps between the two levels. The escape
from the bottom of the system to the first state beyond these two states, i.e. the second excited
state, determines the apparent activation energy. In contrast, for T > Tc reaching the first
excited state is the only relevant step for the escape, so leaving the ground state is determined
by the height of the first excited state.

In our recent work analogous ideas gave rise to the notion of MBs. For a given escape path
we determined, for each minimum, whether or not the probability pback of jumping back to the
origin is higher than 50%. For our present model one can identify pback with pret. For more
complex models, involving, e.g., more than two levels, one generally expects pback � pret

since a single back-jump is not sufficient for reaching the ground state again. In the limit of
low temperatures, however, the two values will approach each other.

3. Simulations

For n = 1, i.e. for a single exit, we determined the apparent activation energy in three
different ways. First, we performed straightforward Monte Carlo simulations and determined
the average time when the system, starting in the ground state, reaches the second excited level.
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Figure 2. The different apparent activation energies for n = 1, z = 2000, and V = 4.

From this we determined E sim
app . Second, we used equation (2) to estimate Eest

app and, third, we
used the MB approximation by replacing pret by either 0 or 1 for pret > 0.5 and pret < 0.5,
respectively. The resulting apparent activation energy is denoted as EMB

app . The temperature
dependences of all three values are shown in figure 2. One can see a very good agreement of
E sim

app and Eest
app. Choosing significantly smaller values of z, minor deviations become visible

between the two functions since the relation ln z � 1 is no longer fulfilled (not shown). On
the MB level, the gradual increase of Eest

app with decreasing temperature is replaced by a sudden
jump in EMB

app .
One may expect the resulting differences between Eest

app and EMB
app to be largely averaged

out if n > 1. We chose n = 100, with different V s which are equally distributed between 1
and 10. The factors γα/γ can be identified with the probability that the escape via state α is
taken. γα/γ can thus be directly determined from the simulations. The results are shown in
figure 3. Again we have an excellent agreement between Eest

app and E sim
app . As expected also, the

apparent activation energy EMB
app is a good estimate of the true apparent activation energy E sim

app ,
at least for 1/kT < 2.5. For even lower temperatures the system is mainly escaping via paths
with V close to the lower limit of 2. Then no effective averaging is present and the deviations,
known from figure 2, are recovered.

4. Discussion

The analysis of our simple model system has revealed that the apparent activation energy can
be predicted by a straightforward analysis of barriers and that the concept of MBs appears
quite naturally. As discussed in [7] the estimates of Eapp can be easily generalized to more
complex situations, involving more than two excitation levels. In particular, the complex
energy landscapes of supercooled liquids can be characterized in this way. Here it is essential
that each PEL minimum has many neighbours so that a tree-like structure as shown in figure 1
emerges.

Our previous BMLJ analysis can now be expressed in the terminology introduced above.
First, we have performed repeated simulations from the individual centres of the MBs and
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Figure 3. The different apparent activation energies for n = 100, z = 2000, and V randomly
distributed between 2 and 10.

determined the escape rate. From this we directly obtain E sim
app . Second, by analysing

the individual escape paths we have determined the minimum for which for the first time
pback < 0.5 and which is thus the first minimum beyond the MB (see above). The resulting
MB construction, together with explicit search routines for saddles,yields the individual escape
energies Eα

app. Third, by averaging over the individual escape paths we have obtained EMB
app .

Actually, for the estimate of EMB
app via equation (5) the factors γα/γ do not appear in practice.

The reason is that the individual paths taken by the system upon repeated simulations are
already weighted by this probability. Thus one only has to average over all values of Eα

app
encountered during the repeated simulations. This is essential, since the individual γα include
unknown prefactors.

One may ask why for the description of the escape dynamics the approximation of pret

by either 0 or 1 is useful and whether the resulting minor inaccuracies could be avoided in
our former BMLJ analysis. In principle this is possible, but it would require the analysis of
the escape channel until pback ≈ 0 and require in particular the determination of all saddles
between the escape minima. Furthermore, the precise determination of pback and thus pret is
numerically very time-consuming. Therefore we have chosen the MB approximation in our
BMLJ simulations.

Finally, we would like to discuss the temperature dependence of the apparent activation
energies in figure 3. Since possible activation energies range between 2 and 20, it may come
as a surprise that E sim

app only varies between 2.7 and 5 in this broad temperature range. As
mentioned before, in the case of the BMLJ system we could not even detect any variation of
E sim

app with temperature. These observations can be rationalized by invoking the MB concept.
Upon decreasing temperature, more and more high barriers are suppressed. This effect would
decrease the apparent activation energy. At the same time, however, the number of states in
some MBs increases such that the activation energies stemming from the corresponding escape
channels increase. Whereas in the BMLJ system the two effects seem to cancel each other, in
the present model they happen in slightly different temperature regimes such that E sim

app displays
a minimum. This minimum, however, is very broad (a factor 3 between 1/kB T = 1 and 3
where E sim

app is basically constant). The same temperature range could be explored in the BMLJ
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system so that a priori it is not evident whether the BMLJ PEL behaves very differently as
compared to this simple model PEL. At present, we are trying to develop a refined PEL which
reflects the properties of the BMLJ as closely as possible.
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